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A theoretical model is developed to predict the far "eld sound radiation from a "nite
#uid-"lled/submerged cylindrical thin shell with porous material sandwich. A combination
of the wave-number domain approach and the transfer matrix method is presented, which is
convenient to analyze the vibratory responses in terms of wave number. Expressions for the
spectral radial velocity of the outer surface of the shell are also formulated. A prediction
model for sound radiation at far "eld is given by using the boundary integral equation.
Extensive numerical results are also presented to illustrate the general characteristics of the
far "eld sound pressure as a function of frequency. An experimental veri"cation is
performed, and a good correlation between the theoretical results and the experimental
results shows that the theoretical study work in this paper is correct.
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1. INTRODUCTION

Porous absorptive materials (e.g. glass wool) o!er the noise-control engineers the possibility
of designing strong lightweight sandwich structures to reduce the sound radiation from the
original single cylindrical shell. In the "rst stages of design, it is desirable to carry out
parametric studies by using the computer programmes based on the theoretical models. An
impedance model for analyzing acoustic characteristics of lagged pipes has been given by
Munjal [1], who used the transfer matrix method to predict the transverse insertion loss. In
addition, Skelton and James [2] have studied the acoustics of anisotropic-layered cylinder
by using a combination of the wave-number domain approach and the "nite element
method. However, their studies are only focused on an in"nite cylindrical sandwich shell.
To the author's knowledge, little work has been done to investigate the sound radiation
characteristics of a "nite #uid-"lled/submerged cylindrical shell with porous material
sandwich. This kind of problem, which belongs to multi-layer #uid-structure couplings, is in
general signi"cantly more complex than the corresponding problem with a shell of in"nite
length. Until now, other than the method addressed in reference [1], or the methods given
in references [2}8], few e!ective methods have been used to solve such a problem
successfully. This is the aim of this paper.

This paper consists of both theoretical investigation and experimental veri"cation on the
far "eld sound radiation from a "nite #uid-"lled/submerged cylindrical thin elastic shell
with porous material sandwich. Section 2 of this paper details the theory: a theoretical
model of vibration analysis for this kind of #uid-"lled/submerged shell is developed by
using a combination of the wave number domain approach (cf. references [2}4]) and the
0022-460X/00/480425#17 $35.00/0 ( 2000 Academic Press



426 C. J. WU E¹ A¸.
transfer matrix method (cf. reference [1]). Accordingly, an expression for the spectral radial
velocity of the outer surface of the shell is presented. Section 3 presents a prediction model
for the far "eld sound pressure by using the boundary integral equation (cf. reference [9]),
which involves the spectral radial velocity addressed in section 2. In section 4, extensive
numerical results are also presented to illustrate general characteristics of the far "eld sound
pressure as a function of frequency. Section 5 describes the experimental set-up and
compares the theoretical model predictions with measured results. Finally, section
6 concludes on the main phenomena that emerge from the theoretical model and
experiments, and summarizes the criteria that predict the far "eld sound radiation from this
kind of shell.

This study has three main originalities. First, it quanti"es for the "rst time the far "eld
sound radiation from a "nite #uid-"lled/submerged cylindrical sandwich shell under
a radial harmonic point load. Second, it uses a combination of the wave number domain
approach and the transfer matrix method to analyze the vibration responses and to present
an expression for the spectral radial velocity of the outer surface of this kind of shell. Finally,
it gives an experimental validation of the theoretical model for such a system.

2. BASIC THEORY

2.1. STATEMENT OF THE PROBLEM

Consider a "nite #uid-"lled/submerged cylindrical sandwich shell, which is shown in
Figure 1, where a cylindrical co-ordinates system (r, u, z) is used to de"ne the position of
points on the shell surface or in the #uids. Note that the shell consists of three parts: The
Figure 1. Fluid-"lled/submerged cylindrical sandwich shell and co-ordinate system.
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inner layer, the outer layer and the porous material layer. The shell is terminated by two
semi-in"nite cylindrical rigid ba%es and is excited by an internal or external harmonic point
load. Both the exterior #uid and the interior #uid are assumed to be stationary and
non-viscous. It is also assumed that there is no other energy source in the #uids. So
structural-acoustic couplings exist among the interior #uid, the inner layer, the porous
material layer, the outer layer and the exterior #uid. This kind of multi-layer coupling
problem can be solved by the transfer matrix equations of aforementioned three layers in
the wave-number domains, and by the boundary integral equation.

In the subsequent sections, a list of symbols is given in Appendix B, and the
time-variation factor e~+ut is suppressed for the sake of brevity.

2.2. VIBRATION ANALYSIS

2.2.1. ¹ransfer matrix equations of the inner layer and the outer layer in the wave-number
domain

First, we will consider the inner layer in terms of the classical assumption of Donnell. By
using Fourier integral transform in the z direction and Fourier series transform in the
u direction, one can get the inner layer equation of motion in the wave-number domain as
follows:
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where the spectral variables are given by Skelton and James [2]
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According to equation (1), the spectral radial displacement of the neutral surface of the
inner layer is easily obtained as (cf. references [10, 11])
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Accordingly, the spectral radial velocity of the neutral surface of the inner layer is
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Moreover, the spectral radial velocities among the inner surface, the neutral surface and
the outer surface of the thin inner layer are identical i.e.,
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By combining equation (5) with equation (6), one can write the transfer matrix equation
of the inner layer in the wave-number domain as follows:
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It is noted that equation (7) involves the spectral variables (pressure pJ
n
(r, f) and radial

velocity uRI
r,n

(r, f)) on the inner surface of the inner layer related to those on the outer surface
of the inner layer.

Similarly, the transfer matrix equation of the outer layer in the wave-number domain can
be easily obtained as follows:
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Here all the spectral variables have the same meanings as for those of the inner layer.

2.2.2. ¹ransfer matrix equation of porous material layer in the wave-number domain

According to the general spectral solution of the Helmholtz equation in #uid and the
corresponding boundary conditions (cf. reference [2]) at #uid-structure surface, one can get
the transfer matrix equation of the porous material layer in the wave-number domain as
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For commercially available mineral wool and glass wool, the wave number k
m

and the
characteristic impedance >

m
are given in reference [1]. Recently, a new absorptive porous

material known as metal "bre has been widely used in many industrial "elds. This kind of
engineering material is made up of many stainless-steel ribbons, and has an advantage over
the common porous materials in high strength and corrosion-resistance. Based on
a number of experimental results, expressions for the wave number and the characteristic
impedance of the metal "bre are given by using the genetic algorithm as follows [11]:
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2.2.3. ¹he shell responses

After combining equations (7), (10), (11) with (9), it can be shown that
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The solution to equation (17) is
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For the case of external excitation, that is to say, the shell is excited by a radial point load
at a point (r

o
, u

o
, z

o
) on the outer surface of the shell. According to equation (2), the
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expression for the spectral exciting force is given by
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For the case of internal excitation (the shell is excited by a radial point load at a point
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While substituting equations (4), (8) and (19)}(21) with equation (18), it is shown that the
spectral radial velocity of the outer surface of the "nite #uid-"lled/submerged sandwich
shell can be calculated numerically.

3. SOUND PRESSURE AT FAR FIELD

In section 2, the expression for the spectral radial velocity of the outer surface of a "nite
#uid-"lled/submerged cylindrical shell is presented. Here, our main interest is the prediction
of the sound radiation at far "eld. Let M and N be the source point (on the outer surface of
the shell) and the observation point (in the exterior #uid), respectively, then the far"eld
sound pressure can be readily written as (see Appendix A)
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Note that the far "eld sound pressure can be easily evaluated when the spectral radial
velocity uRI
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Accordingly, the far "eld sound pressure level is given by
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4. NUMERICAL RESULTS

In this section, the previous theoretical model (see equations (22) and (23)) is used to
predict the far"eld sound radiation spectra for a simply supported #uid-"lled/submerged
sandwich shell, containing as excitation a radial point load applied to the inner surface or
the outer surface. The shell is supposed to be "lled with water and air, and be immersed in
water and air. The porous material is selected as the metal "bre. Parameters for the
numerical studies are listed in Table 1.

Especially, a single #uid-"lled/submerged shell (without porous sandwich) is also
considered here, of which the thickness is equal to the sum of all layers of the sandwich shell,
and other parameters are all just the same to those of the sandwich shell.

Here, it is of interest to focus our attention to the following four #uid cases for the shell
being "lled with air and immersed in air; being "lled with water and immersed in air; being
"lled with air and immersed in water; being "lled with water and immersed in water.



TABLE 1

Data for the studied shells

Simulation shell Experimental shell

Density (kg/m3) o
1
"o

2
"7850, o

m
"270 o

1
"o

2
"7850, o

m
"270

Young's modulus (GN/m2) E
1
"E

2
"210 E

1
"E

2
"210

Poisson ratio l
1
"l

2
"0)3 l

1
"l

2
"0)3

Structural loss factor g
1
"g

2
"0)01 g

1
"g

2
"0)01

Length (mm) ¸"190 ¸"175
Neutral radius (mm) a

1
"53)75, a

2
"56)25 a

1
"51)25, a

2
"53)75

Thickness (mm) h
1
"h

2
"1)5 h

1
"h

2
"1)5

Radial point load (N) F
o
"10 F

o
"1

Force location z
o
"0, u

0
"03 z

0
"0. u

0
"1803

Observation location R"1500 mm, h"903, t"03 R"1500 mm, h"903, t"03

Figure 2. Far "eld sound radiation spectra of two di!erent shells for the case of being "lled with air and
immersed in air: (a) External excitation only; (b) internal excitation only;**, single shell; - - - -, sandwich shell.
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Figures 2}5 show respectively, the far "eld sound radiation spectra comparison between
the simulation sandwich shell and the single shell under the external excitation only and the
internal excitation only, for all aforementioned four #uid cases. It is of interest to note that
for all four #uid cases, the far "eld sound pressures of the sandwich shell under the internal



Figure 3. Similar to Figure 2, but the shells are "lled with water and are immersed in air (a) and (b);**, single
shell; - - - -, sandwich shell.
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excitation are obviously lower than those of the single shell under the same excitation, with
the frequency increasing. However, this is not the case of the external excitation for which
an opposite situation occurs: the far "eld sound pressures of the sandwich shell are bigger
than those of the single shell for all four #uid cases. To explain this, it is necessary to analyze
the structural-acoustic coupling problems between the structures and the #uids in terms of
vibratory power transmission. For the case of internal excitation (that is to say, the point
load is applied to the internal surface of the inner layer), the vibratory power generated by
the inner layer can hardly transmit to the outer layer, as a result of weak coupling existing
between the porous material layer (of which the pores are occupied by air) and the two
elastic layers (the inner layer and the outer layer). Consequently, the far "eld sound
radiation from the outer layer of the sandwich shell is weak with respect to the case of the
single shell. However, for the case of external excitation (that is to say, the point load is
applied to the external surface of the outer layer), strong vibratory powers of the outer shell
are obtained because of the direct excitation and the same weak coupling cases discussed
above. Furthermore, in this case, the thickness of the outer layer is smaller than that of the
single shell, thus the far "eld sound pressures of the outer layer are bigger than those of the
single shell.

In addition, it is also noted that when the exterior #uid is "xed, whether the interior #uid
is air or water, they both have little in#uence on the far "eld sound pressures of the



Figure 4. Similar to Figure 2, but the shells are "lled with air and are immersed in water (a) and (b);**, single
shell; - - - -, sandwich shell.
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sandwich shell. A similar conclusion can be found in reference [11]. On the other hand,
when the interior #uid is "xed, the far "eld sound pressures of the shells (both the sandwich
shell and the single shell) immersed in air are very di!erent from those of the shells immersed
in water.

Figure 6 shows the far "eld sound radiation spectra of the sandwich shells with two
di!erent porous material layers for the case of being "lled with air and immersed in air, and
under two cases of excitation. Figure 7 is similar to Figure 6, but the shells are "lled with
water and are immersed in water. It is noted that the far "eld sound pressures of the
sandwich shell with metal "bre layer are just the same to that of the one with glass wool
layer for two #uid cases and two excitation cases. That is to say, metal "bre has better
acoustic properties available in industry as well as glass wool.

5. EXPERIMENTAL VERIFICATION

The objective of the experiment is to verify the theoretical model developed above. To
this end, an experimental model of simply supported #uid-"lled/submerged cylindrical shell
is set and the far "eld sound pressures are measured in an anechoic chamber. A sketch of the



Figure 5. Similar to Figure 2, but the shells are "lled with water and are immersed in water (a) and (b); **,
single shell; - - - -, sandwich shell.
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measurement system is depicted in Figure 8. The speci"cations for the experimental shell
are given in Table 1, and the shell is supposed to be "lled with air or water and immersed in
air. The shell consists of two thin steel shells and a metal "bre layer, which is made by using
a special assembly method. To approximate the simply supported boundary conditions,
two thin discs are welded at both ends of the shell. The shell with the discs is supported on
two V-type supporters mounted on a concrete base.

Figure 9 shows the far "eld sound radiation spectra comparison between the theoretical
model and the experimental measurement for the experimental sandwich shell for the case
of being "lled with air and immersed in air, and under two case of excitation. Figure 10 is
similar to Figure 9, but the shell is "lled with water and is immersed in air, and under the
external excitation only (the internal excitation case is not included here as a result of
experimental condition, nevertheless, this has little e!ect on this experimental veri"cation).
It is noted that the di!erences between the theoretical and experimental results vary
approximately from 3 to 10 dB (which are acceptable for applications in the industry),
except for several frequencies below 630 Hz for which deviations of over 10 dB are observed.
These deviations are likely to be attributed to the three following aspects: the imperfections
of the experimental boundary conditions, the inevitable errors of the measurement system,
and the simpli"cations during theoretical modelling process. The "rst comparison shows



Figure 6. Far "eld sound radiation spectra of sandwich shells with two di!erent porous layers for the case of
being "lled with air and immersed in air. (a) External excitation only; (b) internal excitation only; - - - -, metal "bre;
-*d* -, glass wool.
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that the theoretical model correctly evaluates the far "eld sound radiation. Furthermore, it
is necessary to improve the experimental environment and to amend the theoretical model
in the future.

6. CONCLUSIONS

In this paper, a theoretical model has been developed to predict the sound radiation from
a "nite #uid-"lled/submerged cylindrical sandwich shell excited by a radial harmonic point
load. The model is based on a combination of the wave-number domain approach, the
transfer matrix method and the boundary integral equation, which is convenient to analyze
the multi-layer structural-acoustic coupling problem for such a shell in terms of wave
number. Extensive numerical studies have been shown that the sandwich shell is very
e!ective to reduce the far "eld sound radiation from the original single shell for the case of
internal excitation. In addition, it is shown that the exterior #uid has great in#uence on the
far "eld sound radiation from the sandwich shell, contrary to the case of interior #uid. It is
also shown that metal "bre has better acoustic properties available in industry as well as
glass wool.



Figure 7. Similar to Figure 6, but the shells are "lled with water and are immersed in water (a) and (b). - - - -,
metal "bre; *d* , glass wool.

Figure 8. Sketch of the measurement system.
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Figure 9. Far "eld sound radiation spectra of the experimental sandwich shell for the case of being "lled with air
and immersed in air. (a) External excitation only; (b) internal excitation only;*d*, experimental results; - - d - -,
theoretical results.

Figure 10. Far "eld sound radiation spectra of the experimental sandwich shell for the case of being "lled with
water and immersed in air, and under the external excitation only;*d*, experimental results; - - d - -, theoretical
results.
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Finally, good correlation is obtained between the far "eld sound pressures measured on
a "nite #uid-"lled/submerged cylindrical sandwich shell under a radial external point load
and the theoretical model predictions. However, some discrepancies occurred in the
comparisons. Further work is still required to make the theoretical model a practical design
tool.
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APPENDIX A: EXPRESSION OF p (R, h, t) IN THE FAR FIELD

Let (r
o
, u, z) and (R, h, t) be the respective co-ordinates of the points M and N, then

the sound pressures p (r
o
, u, z) and p (R, h, t) satisfy the following boundary integral

equation [9]:

p (R, h, t)"P
s
Cp (r

o
, u, z)

Lg (N DM)

Lr
!

Lp (r
o
, u, z)

Lr
g (N DM)D dS. (A1)

Here the function g (N DM) is given by

g (N DM)"
ejk

o
EN!ME

4nEN!ME
, (A2)

where EN!ME is the distance between N and M. For the case of far "eld, one can write
(Achenbach and Qu [12])

EN!ME+R![r
o
sin h cos (t!u)#z cos h]. (A3)



SOUND RADIATION FROM A FINITE FLUID-FILLED/SUBMERGED SHELL 439
Inserting equation (A3) into equation (A2), the result is

g (N DM)+
ejk

o
MR![r

o
sinhcos (t!u)#z cos h]N

4nR
. (A4)

In equation (A1), Lp (r
o
, u, z)/Lr is given by (cf. references [2}9])

Lp (r
o
, u, z)

Lr
"juo

0
uR
r
(r
o
, u, z). (A5)

Also, the expression of (A5) in the wave-number domain is (Skelton and James [2])

pJ
n
(r
o
, f)"juo

0

H
n
(c

0
r
o
)

c
0
)H@

n
(c

0
r
o
)
uRI
r,n

(r
o
, f). (A6)

Let us consider equation (A1) consisting of two parts, p
1

and p
2
, then we can write

p
1
"!P

s

Lp

Lr
(r
o
, u, z) g (N DM) dS, p

2
"P

s

p (r
o
, u, z)

Lg (N DM)

Lr
dS . (A7a, b)

By combining equations (A4) and (A5) with equation (A7a), one can write

p
1
"!
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o
R

4nR
juo

0
r
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2n

0
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~=

uR
r
(r
o
, u, z) e~jk

o
r
o
sinhcos (t!u) ) e~jk

o
zcosh dzdu

"!

ejk
o
R

4nR
juo

0
r
o

`=
+

n/~=
P

2n

0
AP

`=

~=

uR
r,n

(r
o
, z) e~jk

o
zcoshdzB e jnu e~jk

o
r
o
sinhcos (t!u) du

"!

ejk
o
R

4nR
juo

0
r
o

`=
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P

2n

0

uRI
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(r
o
, k

o
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o
r
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sinhcos (t!u) du. (A8)

By using the following relations [4]:

e jnt P
2n

0

e jn(u!t) ) e !jk
o
r
o
sinh cos (u!t) d (u!t)"2nJ

n
(k

o
r
o
sin h) e jn (t!n/2) (A9)

and

cos (u!t)"cos (t!u), du"d (u!t), (A10a, b)

equation (A8) can be simpli"ed as
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Similarly, inserting equation (A4) into equation (A7b), one can write
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By using the following relation (the derivation of both sides of equation (A9) with respect to
r
o
):
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o
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one can write
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Substituting equation (A6) into equation (A14), the result is
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While combining equation (A11) with equation (A15), one can easily obtain the expression
of p (R, h, t) as follows:
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where the following relation (cf. reference [9]) is used:
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APPENDIX B: NOMENCLATURE

a
1
, a

2
neutral radius of the inner layer, the outer layer respectively

c
i

sound speed in the interior #uid
c
o

sound speed in the exterior #uid
c
f

sound speed of the #uid (air) entrapped in the pores of the porous material
E
1
, E

2
Young's modulus of the inner layer, outer layer respectively

f frequency
F
0

amplitude of the exciting force
F3
r,n

spectral radial exciting force
g( ) free-space Green's function, de"ned in equation (A2)
h
1
, h

2
thickness of the inner layer, outer layer respectively

H
n
( ) the nth order Hankel function

H@
n
( ) derivative of the nth order Hankel function with respect to its argument

J
n
( ) the nth order Bessel function

J@
n
( ) derivative of the nth order Bessel function with respect to its argument

k
i

sound wave number in the interior #uid, "u/c
ik

o
sound wave number in the exterior #uid, "u/c

o



SOUND RADIATION FROM A FINITE FLUID-FILLED/SUBMERGED SHELL 441
k
m

complex wave number of the porous material (metal "bre), de"ned in equation (16)
k
f

sound wave number of the #uid (air) entrapped in the pores of porous material,
"u/c

f
¸ semi-length of the shell
¸
p

sound pressure level, de"ned in equation (23)
pJ
n

spectral sound pressure acting on #uid}structure surface
r
1
, r

o
external radius of inner layer, outer layer respectively

r
1
, r

2
internal radius of inner layer, outer layer respectively

S outer surface of the shell
SI `
r,n

, SI `
z,n

, SI ù,n radial, axial, and circumferential components of spectral boundary source vectors at
z"¸ of shell

SI ~
r,n

, SI ~
z,n

, SI ~u,n radial, axial, and circumferential components of spectral boundary source vectors at
z"!¸ of shell

[T
m
] transfer matrix of the porous material layer, de"ned in equation (11)

uJ
r,n

, uJ
z,n

, uJ u,n radial, axial, and circumferential components of spectral displacement vectors of the
inner layer or outer layer

uRI
r,n

spectral radial velocity of the surface of the inner or outer layer
XI

n
spectral variable de"ned in equation (4)

>
f

characteristic impedance of the #uid (air) entrapped in porous material, "o
f
c
f>

m
complex characteristic impedance of porous material (metal "bre), de"ned in equation
(15)

Y
n
( ) the nth order Neumann function

Y@
n
( ) derivative of the nth order Neumann function with respect to its argument

ZI
1,n

spectral radial mechanical impedance of the inner layer, de"ned in equation (8)
ZI

2,n
spectral radial mechanical impedance of the outer layer

ZI
i,n

spectral radiation impedance in the interior #uid, de"ned in equation (19)
ZI

o,n
spectral radiation impedance in the exterior #uid, de"ned in equation (20)

d Dirac Delta function
o
i
, o

o
density of the interior #uid, exterior #uid respectively

o
1
, o

2
density of the inner layer, outer layer respectively

o
m

density of the porous material
c
i radial wave number in the interior #uid, "Jk2

i
!f2

c
o radial wave number in the exterior #uid, "Jk2

o
!f2

c
m radial wave number of the porous material, "Jk2

m
!f2

l
1
, l

2
Poisson's ratio of the inner layer, outer layer respectively

u circular frequency, "2nf
f axial wave number
[CI

n
] spectral matrix of classical Donnell's di!erential operator

CI 1
n3

, CI 2
n3

, CI 3
n3

three elements of the third row of the matrix [CI
n
]
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